## SPARSE KERNEL MACHINES

## Motivation

Inference can be slow for kernel methods, as the kernel $k\left(\mathbf{x}, \mathbf{x}_{n}\right)$ must be evaluated for the new data point $\mathbf{x}$ against all training data points $\mathbf{x}_{n}$.

In a sparse kernel machine, the kernel $k\left(\mathbf{x}, \mathbf{x}_{n}\right)$ need only be evaluated for a subset of the training data.

We will focus in particular on the Support Vector Machine (SVM), applied to classification problems.

SVMs are discriminative decision machines: they do not provide posterior probabilities.

## Support Vector Machines

SVMs are based on the linear model $y(\mathbf{x})=\mathbf{w}^{t} \phi(\mathbf{x})+b$
Assume training data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ with coresponding target values $t_{1}, \ldots, t_{N}, \mathrm{t}_{n} \in\{-1,1\}$.
$\mathbf{x}$ classified according to sign of $y(\mathbf{x})$.

Assume for the moment that the training data are linearly separable in feature space.
Then $\exists \mathbf{w}, b: t_{n} y\left(\mathbf{x}_{n}\right)>0 \forall n \in[1, \ldots N]$

## Maximum Margin Classifiers

## Sparse Kernel Machines

$\square$ When the training data are linearly separable, there are generally an infinite number of solutions for ( $\mathbf{w}, b$ ) that separate the classes exactly.
$\square$ The margin of such a classifier is defined as the orthogonal distance in feature space between the decision boundary and the closest training vector.

- SVMs are an example of a maximum margin classifer, which finds the linear classifier that maximizes the margin.



## Probabilistic Motivation

$\square$ The maximum margin classifier has a probabilistic motivation.
If we model the class-conditional densities with a KDE using Gaussian kernels with variance $\sigma^{2}$, then in the limit as $\sigma \rightarrow 0$, the optimal linear decision boundary $\rightarrow$ maximum margin linear classifier.


## Two Class Discriminant Function

## Sparse Kernel Machines

Let $f(\cdot)$ be the identity:
$y(\mathbf{x})=\mathbf{w}^{t} \mathbf{x}+w_{0}$
$y(\mathbf{x}) \geq 0 \rightarrow \mathbf{x}$ assigned to $C_{1}$
$y(\mathbf{x})<0 \rightarrow \mathbf{x}$ assigned to $C_{2}$
Thus $y(\mathbf{x})=0$ defines the decision boundary


## Maximum Margin Classifiers

Distance of point $\mathbf{x}_{n}$ from decision surface is given by:
$\frac{t_{n} y\left(\mathbf{x}_{n}\right)}{\|\mathbf{w}\|}=\frac{t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right)}{\|\mathbf{w}\|}$
Thus we seek:
$\underset{\mathbf{w}, b}{\arg \max }\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left[t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right)\right]\right\}$


## Maximum Margin Classifiers

Distance of point $\mathbf{x}_{n}$ from decision surface is given by:
$\frac{t_{n} y\left(\mathbf{x}_{n}\right)}{\|\mathbf{w}\|}=\frac{t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right)}{\|\mathbf{w}\|}$
Note that rescaling wand b by the same factor leaves the distance to the decision surface unchanged.

Thus, wlog, we consider only solutions that satisfy:
$t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right)=1$.
for the point $\mathbf{x}_{\mathrm{n}}$ that is closest to the decision surface.


## Quadratic Programming Problem

Then all points $\mathbf{x}_{\mathrm{n}}$ satisfy $t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right) \geq 1$

Points for which equality holds are said to be active.
All other points are inactive.
Now $\underset{\mathbf{w}, b}{\operatorname{argmax}}\left\{\frac{1}{\|\mathbf{w}\|} \min _{n}\left[t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right)\right]\right\}$
$\leftrightarrow \frac{1}{2} \arg \min \|\mathbf{w}\|^{2}$
w
Subject to $t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right) \geq 1 \forall \mathbf{x}_{n}$
This is a quadratic programming problem.


## Quadratic Programming Problem

$\frac{1}{2} \arg \min \|\mathbf{w}\|^{2}$, subject to $t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right) \geq 1 \forall \mathbf{x}_{n}$
w

Solve using Lagrange multipliers $a_{n}$ :
$L(\mathbf{w}, b, \mathbf{a})=\frac{1}{2} \underset{\mathbf{w}}{\arg \min }\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right)-1\right\}$


## END OF LECTURE NOV 8, 2010

## Dual Representation

Solve using Lagrange multipliers $a_{n}$ :
$L(\mathbf{w}, b, \mathbf{a})=\frac{1}{2} \underset{\mathbf{w}}{\operatorname{argmin}}\|\mathbf{w}\|^{2}-\sum_{n=1}^{N} a_{n}\left\{t_{n}\left(\mathbf{w}^{t} \phi\left(\mathbf{x}_{n}\right)+b\right)-1\right\}$

Setting derivatives with respect to $\mathbf{w}$ and b , we get:
$\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)$
$\sum_{n=1}^{N} a_{n} t_{n}=0$


## Dual Representation

## Sparse Kernel Machines

Substituting for $\mathbf{w}$ and $b$ leads to the dual representation of the maximum margin problem, in which we maximize:
$\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)$
with respect to a, subject to:
$a_{n} \geq 0 \forall n$
$\sum_{n=1}^{N} a_{n} t_{n}=0$
and where $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x})^{t} \phi\left(\mathbf{x}^{\prime}\right)$


## Dual Representation

Using $\mathbf{w}=\sum_{n=1}^{N} a_{n} t_{n} \phi\left(\mathbf{x}_{n}\right)$, a new point x is classified by computing
$y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}, \mathbf{x}_{n}\right)+b$
The Karush-Kuhn-Tucker (KKT) conditions for this constrained optimization problem are:
$\mathrm{a}_{n} \geq 0$
$t_{n} y\left(\mathbf{x}_{n}\right)-1 \geq 0$
$a_{n}\left\{t_{n} y\left(\mathbf{x}_{n}\right)-1\right\}=0$
Thus for every data point, either $a_{n}=0$ or $t_{n} y\left(\mathbf{x}_{n}\right)=1$

## Solving for the Bias

Once the optimal a is determined, the bias $b$ can be computed from $b=\frac{1}{N_{S}} \sum_{n \in S}\left(t_{n}-\sum_{m \in S} a_{m} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)$
where $S$ is the index set of support vectors and $N_{s}$ is the number of support vectors.

## Example (Gaussian Kernel)

## Sparse Kernel Machines

Input Space


## Overlapping Class Distributions

The SVM for non-overlapping class distributions can be expressed as the minimization of $\sum_{n=1}^{N} E_{\infty}\left(y\left(\mathbf{x}_{n}\right) t_{n}-1\right)+\lambda\|\mathbf{w}\|^{2}$
where $E_{\infty}(z)$ is 0 if $z \geq 0$, and $\infty$ otherwise.
This forces all points to lie on or outside the margins, on the correct side for their class.
To allow for misclassified points, we have to relax this $E_{\infty}$ term.

## Slack Variables

To this end, we introduce $N$ slack variables $\xi_{n} \geq 0, n=1, \ldots N$.
$\xi_{n}=0$ for points on or on the correct side of the margin boundary for their class
$\xi_{n}=\left|t_{n}-y\left(\mathbf{x}_{n}\right)\right|$ for all other points.
Thus $\xi_{n}<1$ for points that are correctly classified
$\xi_{n}>1$ for points that are incorrectly classified
We now minimize $C \sum_{n=1}^{N} \xi_{n}+\frac{1}{2}\|\mathbf{w}\|^{2}$, where $C>0$.
subject to $t_{n} y\left(\mathbf{x}_{n}\right) \geq 1-\xi_{n}$, and $\xi_{n} \geq 0, n=1, \ldots N$


## Dual Representation

This leads to a dual representation, where we maximize
$\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$
with constraints
$0 \leq a_{n} \leq C$
and
$\sum_{n=1}^{N} a_{n} t_{n}=0$

## Support Vectors

Again, a new point $\mathbf{x}$ is classified by computing
$y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}, \mathbf{x}_{n}\right)+b$
For points that are on the correct side of the margin, $a_{n}=0$.
Thus support vectors consist of points between their margin and the decision boundary, as well as misclassified points.

## Bias

Again, a new point $\mathbf{x}$ is classified by computing
$y(\mathbf{x})=\sum_{n=1}^{N} a_{n} t_{n} k\left(\mathbf{x}, \mathbf{x}_{n}\right)+b$
Once the optimal a is determined, the bias $b$ can be computed from
$b=\frac{1}{N_{M}} \sum_{n \in M}\left(t_{n}-\sum_{m \in S} a_{m} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)$
where
$S$ is the index set of support vectors
$N_{s}$ is the number of support vectors
$M$ is the index set of points on the margins
$N_{M}$ is the number of points on the margins

## Solving the Quadratic Programming Problem

$\tilde{L}(\mathbf{a})=\sum_{n=1}^{N} a_{n}-\frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_{n} a_{m} t_{n} t_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$
subject to $0 \leq a_{n} \leq C$ and $\sum_{n=1}^{N} a_{n} t_{n}=0$
$\square$ Problem is convex.
$\square$ Solutions are generally $\mathrm{O}\left(\mathrm{N}^{3}\right)$.
$\square$ Traditional quadratic programming techniques often infeasible due to computation and memory requirements.
$\square$ Instead, heuristic methods such as sequential minimal optimization can be used, that in practice are found to scale as $O(N)-O\left(N^{2}\right)$.

## Example

Input Space


## Relation to Logistic Regression

## Sparse Kernel Machines

The objective function for the soft-margin SVM can be written as:
$\sum_{n=1}^{N} E_{s v}\left(y_{n} t_{n}\right)+\lambda\|\mathbf{w}\|^{2}$
where $E_{S V}(z)=[1-z]_{+}$is the hinge error function,
and $[z]_{+}=z$ if $z \geq 0$
$=0$ otherwise.
For $t \in\{-1,1\}$, the objective function for a regularized version of logistic regression can be written as:
$\sum_{n=1}^{N} E_{L R}\left(y_{n} t_{n}\right)+\lambda\|\mathbf{w}\|^{2}$
where $E_{L R}(z)=\log (1+\exp (-z))$.


## Multiclass SVMs

$\square$ We encounter the same problems we experienced with least-squares.

## One-Versus-The-Rest

$\square$ Idea \#1: Just use $K-1$ discriminant functions, each of which separates one class $C_{\mathrm{k}}$ from the rest.
$\square$ Problem: Ambiguous regions


## One-Versus-The-Rest

$\square$ Possible Solution: select class according to: $\underset{k}{\operatorname{argmax}} y_{k}(\mathbf{x})$
$\square$ Problems:
$\square$ Classifiers were all trained separately.

- Methods for joint training have been proposed - slows training.
- Training is imbalanced (e.g., for $\mathrm{K}=10$ classes, $10 \%$ in-class, $90 \%$ out-of-class)
- Can be solved by using $t_{n} \in\left\{-\frac{1}{K-1}, 1\right\}$.



## One-Versus-One

$\square$ Idea \#2: Use $K(K-1) / 2$ discriminant functions, each of which separates two classes $C_{i}$, $C_{\mathrm{k}}$ from each other.
$\square$ Each point classified by majority vote.
$\square$ Problems:
$\square$ Ambiguous regions
$\square$ Expensive


## Assignment 1 Results



## Methods Submitted

$\square$ Hierarchy of Gaussian models
$\square$ Treat $x$ and $y$ coordinates as independent
$\square$ Probabilistic PCA
$\square$ Gaussian mixtures
$\square$ Mean shift
$\square$ Use sample mean rather than theoretical mean
$\square$ Approximate mean as an ellipse
$\square$ Local Gaussian model
$\square$ Bi-arc interpolation

## Some Things We've Learned

$\square$ Use the book!
$\square$ The curse of dimensionality
$\square$ Probabilistic PCA
$\square$ The importance of coding correctly!

## Assignment 2

$\square$ Classify shapes as 'animal' or 'vegetable'
$\square$ Winner has the highest proportion correct
$\square$ May be tough to beat nearest-neighbour for this dataset


## Classifiers Provided



Classifier

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

## SVMs for Regression

In standard linear regression, we minimize
$\frac{1}{2} \sum_{n=1}^{N}\left(y_{n}-t_{n}\right)^{2}+\frac{\lambda}{2}\|\mathbf{w}\|^{2}$
This penalizes all deviations from the model.
To obtain sparse solutions, we replace the quadratic error function by an $\varepsilon$-insensitive error function, e.g.,
$E_{\varepsilon}(y(\mathbf{x})-t)=\left\{\begin{array}{c}0, \text { if }|y(\mathbf{x})-t|<\varepsilon \\ |y(\mathbf{x})-t|-\varepsilon, \text { otherwise }\end{array}\right.$

See text for details of solution.


## Example



## Relevance Vector Machines

$\square$ Some drawbacks of SVMs:
$\square$ Do not provide posterior probabilities.
$\square$ Not easily generalized to $K>2$ classes.
$\square$ Parameters $(C, \varepsilon)$ must be learned by cross-validation.
$\square$ The Relevance Vector Machine is a sparse Bayesian kernel technique that avoids these drawbacks.
$\square$ RVMs also typically lead to sparser models.

## RVMs for Regression

$p(t \mid \mathbf{x}, \mathbf{w}, \beta)=N\left(t \mid y(\mathbf{x}), \beta^{-1}\right)$
where $y(\mathbf{x})=\mathbf{w}^{t} \phi(\mathbf{x})$

In an RVM, the basis functions $\phi(\mathbf{x})$ are kernels $k\left(\mathbf{x}, \mathbf{x}_{n}\right)$ :
$y(x)=\sum_{n=1}^{N} w_{n} k\left(\mathbf{x}, \mathbf{x}_{n}\right)+b$

However, unlike in SVMs, the kernels need not be positive definite, and the $\mathbf{x}_{n}$ need not be the training data points.

## RVMs for Regression

Likelihood:
$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{x}_{n}, \mathbf{w}, \beta\right)$
where the $n^{\text {th }}$ row of $\mathbf{X}$ is $\mathbf{x}_{n}^{t}$.
Prior:
$p(\mathbf{w} \mid \alpha)=\prod_{i=1}^{M} N\left(w_{i} \mid 0, \alpha_{i}^{-1}\right)$
$\square$ Note that each weight parameter has its own precision hyperparameter.

## RVMs for Regression


$\square$ The conjugate prior for the precision of a Gaussian is a gamma distribution.
$\square$ Integrating out the precision parameter thus leads to a Student's $t$ distribution over $\mathrm{w}_{i}$.
$\square$ Thus the distribution over $\mathbf{w}$ is a product of Student's $\dagger$ distributions.
$\square$ As a result, maximizing the evidence will yield a sparse $\mathbf{w}$.
$\square$ Note that to achieve sparsity it is critical that each parameter $w_{i}$ has a separate precision $\alpha_{i}$.

## RVMs for Regression



If we let $\mathrm{a} \rightarrow 0, \mathrm{~b} \rightarrow 0$, then $p\left(\log \alpha_{i}\right) \rightarrow$ uniform and $p\left(w_{i}\right) \rightarrow\left|w_{i}\right|^{-1}$.

## RVMs for Regression

Likelihood:
$p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta)=\prod_{n=1}^{N} p\left(t_{n} \mid \mathbf{x}_{n}, \mathbf{w}, \beta\right)$
where the $n^{t h}$ row of $\mathbf{X}$ is $\mathbf{x}_{n}^{t}$.

Prior:
$p(\mathbf{w} \mid \alpha)=\prod_{i=1}^{M} N\left(w_{i} \mid 0, \alpha_{i}^{-1}\right)$
$\square$ In practice, it is difficult to integrate $\alpha$ out exactly.
$\square$ Instead, we use Type II Maximum Likelihood, finding ML values for each $\alpha_{i}$.
$\square$ When we maximize the evidence with respect to these hyperparameters, many will $\rightarrow \infty$.
$\square$ As a result, the corresponding weights will $\rightarrow 0$, yielding a sparse solution.

## RVMs for Regression

$\square$ Since both the likelihood and prior are normal, the posterior over $\mathbf{w}$ will also be normal:

Posterior:
$p(\mathbf{w} \mid \mathbf{t}, \mathbf{X}, \alpha, \beta)=N(\mathbf{w} \mid \mathbf{m}, \Sigma)$
where
$\mathbf{m}=\beta \Sigma \Phi^{t} \mathbf{t}$
$\Sigma=\left(\mathbf{A}+\beta \Phi^{t} \Phi\right)^{-1}$
and
$\Phi_{n i}=\phi_{i}\left(\mathbf{x}_{n}\right)$
$\mathbf{A}=\operatorname{diag}\left(\alpha_{i}\right)$

## RVMs for Regression

$\square$ The values for $\alpha$ and $\beta$ are determined using the evidence approximation, where we maximize
$p(\mathbf{t} \mid \mathbf{X}, \alpha, \beta)=\int p(\mathbf{t} \mid \mathbf{X}, \mathbf{w}, \beta) p(\mathbf{w} \mid \alpha) d \mathbf{w}$
In general, this results in many of the precision parameters $\alpha_{i} \rightarrow \infty$, so that $\mathrm{w}_{i} \rightarrow 0$.

Unfortunately, this is a non-convex problem.

## Example



