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Motivation 

   

Inference can be slow for kernel methods, as the kernel k(x,xn) must be 
evaluated for the new data point x against all training data points xn.

   

In a sparse kernel machine, the kernel k(x,xn) need only be 
evaluated for a subset of the training data.

  

We will focus in particular on the Support Vector Machine (SVM),
applied to classification problems.

  

SVMs are discriminative decision machines:  
they do not provide posterior probabilities.
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Support Vector Machines 

   SVMs are based on the linear model y(x) = w tφ(x) + b

    

Assume training data x1,…,xN  with coresponding target values
t1,…,tN,  tn ∈{−1,1}.

   x classified according to sign of y(x).

 Assume for the moment that the training data are linearly separable in feature space.

    Then ∃w,b : tny xn( ) > 0 ∀n ∈[1,…N]
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Maximum Margin Classifiers 

  When the training data are linearly separable, there are generally an 
infinite number of solutions for (w, b) that separate the classes exactly. 

  The margin of such a classifier is defined as the orthogonal distance in 
feature space between the decision boundary and the closest training 
vector. 

  SVMs are an example of a maximum margin classifer, which finds the 
linear classifier that maximizes the margin. 

y = 1
y = 0

y = −1

margin
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Probabilistic Motivation 

  The maximum margin classifier has a probabilistic motivation. 

y = 1
y = 0

y = −1

margin

 

If we model the class-conditional densities with a KDE using 
Gaussian kernels with variance σ 2, then in the limit as σ → 0, 
the optimal linear decision boundary→ maximum margin linear classifier.
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Two Class Discriminant Function 

   

Let f (⋅) be the identity:
y(x) = w tx +w0

    

y(x) ≥ 0→ x assigned to C1

y(x) < 0→ x assigned to C2

   Thus y(x) = 0 defines the decision boundary

x2

x1

w
x

y(x)
‖w‖

x⊥

−w0
‖w‖

y = 0
y < 0

y > 0

R2

R1
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Maximum Margin Classifiers 

y = 1
y = 0

y = −1

margin

   

Distance of point xn  from decision surface is given by:

tny xn( )
w

=
tn w tφ xn( ) + b( )

w

   

Thus we seek:

argmax
w ,b

1
w

min
n

tn w tφ xn( ) + b( )⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Maximum Margin Classifiers 

y = 1
y = 0

y = −1

margin

   

Distance of point xn  from decision surface is given by:

tny xn( )
w

=
tn w tφ xn( ) + b( )

w

  

Note that rescaling w  and b by the same factor 
leaves the distance to the decision surface unchanged.

 

Thus, wlog, we consider only solutions that satisfy:

   

tn w tφ xn( ) + b( ) = 1.

for the point xn  that is closest to the decision surface.
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Quadratic Programming Problem 

y = 1
y = 0

y = −1

margin

   
Then all points xn  satisfy tn w tφ xn( ) + b( ) ≥1

  

Points for which equality holds are said to be active.
All other points are inactive.

   

Now argmax
w ,b

1
w

min
n

tn w tφ xn( ) + b( )⎡
⎣

⎤
⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

↔
1
2

argmin w
2

w

Subject to tn w tφ xn( ) + b( ) ≥1 ∀xn

  This is a quadratic programming problem.
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Quadratic Programming Problem 

y = 1
y = 0

y = −1

margin

   

1
2

argmin w
2

w

,  subject to tn w tφ xn( ) + b( ) ≥1 ∀xn

   

Solve using Lagrange multipliers an :

L(w,b,a) = 1
2

argmin w
2

w

− an tn w tφ xn( ) + b( ) −1{ }
n=1

N

∑
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Dual Representation 

y = 1
y = 0

y = −1

margin

   

Solve using Lagrange multipliers an :

L(w,b,a) = 1
2

argmin w
2

w

− an tn w tφ xn( ) + b( ) −1{ }
n=1

N

∑

   

Setting derivatives with respect to w  and b, we get:

w = antnφ(xn)
n=1

N

∑

antn
n=1

N

∑ = 0
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Dual Representation 

y = 1
y = 0

y = −1

margin

    

Substituting for w  and b leads to the dual representation 
of the maximum margin problem, in which we maximize:

L a( ) = an
n=1

N

∑ −
1
2

anamtntmk xn,xm( )
m=1

N

∑
n=1

N

∑
with respect to a,  subject to:
an ≥ 0 ∀n

antn
n=1

N

∑ = 0

and where k x, ′x( ) = φ(x)tφ( ′x )
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Dual Representation 

   

Using w = antnφ(xn)
n=1

N

∑ ,  a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

∑ + b

   

The Karush-Kuhn-Tucker (KKT) conditions for this constrained optimization problem are:
an ≥ 0

tny xn( ) −1≥ 0

an tny xn( ) −1{ } = 0

   Thus for every data point, either an = 0 or tny xn( ) = 1.

y = 1

y = 0

y = −1

support vectors 
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Solving for the Bias 

   

Once the optimal a is determined, the bias b can be computed from

b =
1

NS

tn − amtmk(xn,xm)
m∈S
∑⎛

⎝⎜
⎞
⎠⎟n∈S

∑
where S is the index set of support vectors and NS  is the number of support vectors.
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Example (Gaussian Kernel) 

Input Space 

  x1

  x2
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Overlapping Class Distributions 

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

   

The SVM for non-overlapping class distributions can be expressed as the minimization of

E∞ y xn( ) tn −1( )
n=1

N

∑ + λ w
2

where E∞(z) is 0 if z ≥ 0, and ∞ otherwise.

 This forces all points to lie on or outside the margins, on the correct side for their class.

 To allow for misclassified points, we have to relax this E∞  term.
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Slack Variables 

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

   To this end, we introduce N  slack variables ξn ≥ 0, n = 1,…N.

  ξn = 0 for points on or on the correct side of the margin boundary for their class

   
ξn = tn − y xn( )  for all other points.

  

Thus ξn <1 for points that are correctly classified
ξn >1 for points that are incorrectly classified

   
We now minimize C ξn

n=1

N

∑ +
1
2

w
2
, where C > 0.

   subject to tny xn( ) ≥1− ξn,  and ξn ≥ 0, n = 1,…N
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Dual Representation 

    

This leads to a dual representation, where we maximize

L(a) = an
n=1

N

∑ −
1
2

anamtntmk xn,xn( )
m=1

N

∑
n=1

N

∑
with constraints
0 ≤ an ≤C
and

antn
n=1

N

∑ = 0

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0
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Support Vectors 

   

Again, a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

∑ + b

  For points that are on the correct side of the margin, an = 0.

 

Thus support vectors consist of points between their margin and the decision boundary,
as well as misclassified points.

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0
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Bias 

   

Again, a new point x is classified by computing

y(x) = antnk(x,xn)
n=1

N

∑ + b

y = 1

y = 0

y = −1

ξ > 1

ξ < 1

ξ = 0

ξ = 0

    

Once the optimal a is determined, the bias b can be computed from

b =
1

NM

tn − amtmk(xn,xm)
m∈S
∑⎛

⎝⎜
⎞
⎠⎟n∈M

∑
where 
S is the index set of support vectors
NS  is the number of support vectors
M  is the index set of points on the margins
NM  is the number of points on the margins
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Solving the Quadratic Programming Problem 

  Problem is convex. 

  Solutions are generally O(N3). 

  Traditional quadratic programming techniques often infeasible 
due to computation and memory requirements. 

  Instead, heuristic methods such as sequential minimal 
optimization can be used, that in practice are found to scale as 
O(N) - O(N2). 

    

L(a) = an
n=1

N

∑ −
1
2

anamtntmk xn,xn( )
m=1

N

∑
n=1

N

∑

subject to 0 ≤ an ≤C  and antn
n=1

N

∑ = 0
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Example 

!2 0 2

!2

0

2

Input Space 

  x1

  x2
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Relation to Logistic Regression 

−2 −1 0 1 2
z

E(z)

   

The objective function for the soft-margin SVM can be written as:

ESV yntn( )
n=1

N

∑ + λ w
2

where ESV z( ) = 1− z⎡⎣ ⎤⎦+  is the hinge error function,

and z⎡⎣ ⎤⎦+ = z if  z ≥ 0

= 0 otherwise.

   

For t ∈{−1,1},  the objective function for a regularized version 
of logistic regression can be written as:

ELR yntn( )
n=1

N

∑ + λ w
2

where ELR z( ) = log 1+ exp(−z)( ).

 ESV

 ELR
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Multiclass SVMs 

  We encounter the same problems we experienced 
with least-squares. 
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One-Versus-The-Rest 

  Idea #1: Just use K-1 discriminant functions, each of which 
separates one class Ck from the rest.   

  Problem:  Ambiguous regions 

R1

R2

R3

?

C1

not C1

C2

not C2
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One-Versus-The-Rest 

  Possible Solution:  select class according to: 

  Problems: 
  Classifiers were all trained separately. 

  Methods for joint training have been proposed – slows training. 

  Training is imbalanced (e.g., for K=10 classes, 10% in-class, 90% 
out-of-class) 
  Can be solved by using 

R1

R2

R3

?

C1

not C1

C2

not C2

   
argmax

k
yk (x)

  
tn ∈ −

1
K −1

,1
⎧
⎨
⎩

⎫
⎬
⎭

.
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One-Versus-One 

  Idea #2: Use K(K-1)/2 discriminant functions, each 
of which separates two classes Cj, Ck from each 
other.  

  Each point classified by majority vote. 
  Problems:   

 Ambiguous regions 
 Expensive R1

R2

R3

?C1

C2

C1

C3

C2

C3
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Assignment 1 Results 
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Methods Submitted 

  Hierarchy of Gaussian models 
  Treat x and y coordinates as independent 
  Probabilistic PCA 
  Gaussian mixtures 
  Mean shift 
  Use sample mean rather than theoretical mean 
  Approximate mean as an ellipse 
  Local Gaussian model 
  Bi-arc interpolation 
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Some Things We’ve Learned 

  Use the book! 
  The curse of dimensionality 
  Probabilistic PCA 
  The importance of coding correctly! 
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Assignment 2 

  Classify shapes as ‘animal’ or ‘vegetable’ 
  Winner has the highest proportion correct 
  May be tough to beat nearest-neighbour for this 

dataset 
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Classifiers Provided 
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SVMs for Regression 

   

In standard linear regression, we minimize
1
2

yn − tn( )2

n=1

N

∑ +
λ
2

w
2

 This penalizes all deviations from the model.

   

To obtain sparse solutions, we replace the quadratic error function
by an ε-insensitive error function, e.g., 

Eε y(x) − t( ) = 0, if y(x) - t < ε

y(x) - t − ε,  otherwise

⎧
⎨
⎪

⎩⎪

 See text for details of solution.

y

y + ε

y − ε

y(x)

x

ξ̂ > 0

ξ > 0
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Example 

x

t

0 1

!1

0

1
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Relevance Vector Machines 

  Some drawbacks of SVMs: 
 Do not provide posterior probabilities. 
 Not easily generalized to K > 2 classes. 
 Parameters (C, ε) must be learned by cross-validation. 

  The Relevance Vector Machine is a sparse 
Bayesian kernel technique that avoids these 
drawbacks. 

  RVMs also typically lead to sparser models. 
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RVMs for Regression 

    p t | x,w,β( ) =N t | y(x),β−1( )
   where y(x) = w tφ(x)

   

In an RVM, the basis functions φ(x) are kernels k x,xn( ) :

y(x) = wnk x,xn( )
n=1

N

∑ + b

   

However, unlike in SVMs, the kernels need not be 
positive definite, and the xn  need not be the training data points.
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RVMs for Regression 

  Note that each weight parameter has its own precision hyperparameter. 

   

Likelihood:

p t | X,w,β( ) = p tn | xn,w,β( )
n=1

N

∏
where the nth  row of X is xn

t .

    

Prior:

p(w |α) = N wi | 0,α i
−1( )

i=1

M

∏
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RVMs for Regression 

  The conjugate prior for the precision of a Gaussian is a gamma distribution. 
  Integrating out the precision parameter thus leads to a Student’s t distribution 

over wi. 
  Thus the distribution over w is a product of Student’s t distributions. 
  As a result, maximizing the evidence will yield a sparse w. 
  Note that to achieve sparsity it is critical that each parameter wi has a separate 

precision αi. 

   
p(wi |α i ) =N wi | 0,α i

−1( )

  
p α i( ) = Gam α i | a,b( )

  
p wi( ) = St wi | 0,a / b,2a( )

Bayesian Inference: Principles and Practice in Machine Learning 16

case of a Gamma hyperprior, which we introduce for greater generality here. This combination of
the prior over αm controlling the prior over wm gives us what is often referred to as a hierarchical
prior. Now, if we have p(wm|αm) and p(αm) and we want to know the ‘true’ p(wm) we already
know what to do — we must marginalise:

p(wm) =
∫

p(wm|αm) p(αm) dαm. (27)

For a Gamma p(αm), this integral is computable and we find that p(wm) is a Student-t distribution
illustrated as a function of two parameters in Figure 8; its equivalent as a regularising penalty
function would be

∑
m log |wm|.

Gaussian prior Marginal prior: single ! Independent !

Figure 8: Contour plots of Gaussian and Student-t prior distributions over two parameters.
While the marginal prior p(w1, w2) for the ‘single’ hyperparameter model of Section
2 has a much sharper peak than the Gaussian at zero, it can be seen that it is
not sparse unlike the multiple ‘independent’ hyperparameter prior, which as well as
having a sharp peak at zero, places most of its probability mass along axial ridges
where the magnitude of one of the two parameters is small.

4.3 A Sparse Bayesian Model for Regression

We can develop a sparse regression model by following an identical methodology to the previous
sections. Again, we assume independent Gaussian noise: tn ∼ N(y(xn;w), σ2), which gives a
corresponding likelihood:

p(t|w,σ2) = (2πσ2)–N/2 exp
{
− 1

2σ2
‖t−Φw‖2

}
, (28)

where as before we denote t = (t1 . . . tN )T, w = (w1 . . . wM )T, and Φ is the N ×M ‘design’ matrix
with Φnm = φm(xn).

Following the Bayesian framework, we desire the posterior distribution over all unknowns:

p(w,α,σ2|t) =
p(t|w, α,σ2)p(w, α,σ2)

p(t)
, (29)

which we can’t compute analytically. So as previously, we decompose this as:

p(w, α,σ2|t) ≡ p(w|t, α,σ2) p(α,σ2|t) (30)

where p(w|t, α,σ2) is the ‘weight posterior’ distribution, and is tractable. This leaves p(α,σ2|t)
which must be approximated.

  w2

  w1
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RVMs for Regression 

   
p(wi |α i ) =N wi | 0,α i

−1( )

  
p α i( ) = Gam α i | a,b( )

  
p wi( ) = St wi | 0,a / b,2a( )

Bayesian Inference: Principles and Practice in Machine Learning 16

case of a Gamma hyperprior, which we introduce for greater generality here. This combination of
the prior over αm controlling the prior over wm gives us what is often referred to as a hierarchical
prior. Now, if we have p(wm|αm) and p(αm) and we want to know the ‘true’ p(wm) we already
know what to do — we must marginalise:

p(wm) =
∫

p(wm|αm) p(αm) dαm. (27)

For a Gamma p(αm), this integral is computable and we find that p(wm) is a Student-t distribution
illustrated as a function of two parameters in Figure 8; its equivalent as a regularising penalty
function would be

∑
m log |wm|.

Gaussian prior Marginal prior: single ! Independent !

Figure 8: Contour plots of Gaussian and Student-t prior distributions over two parameters.
While the marginal prior p(w1, w2) for the ‘single’ hyperparameter model of Section
2 has a much sharper peak than the Gaussian at zero, it can be seen that it is
not sparse unlike the multiple ‘independent’ hyperparameter prior, which as well as
having a sharp peak at zero, places most of its probability mass along axial ridges
where the magnitude of one of the two parameters is small.

4.3 A Sparse Bayesian Model for Regression

We can develop a sparse regression model by following an identical methodology to the previous
sections. Again, we assume independent Gaussian noise: tn ∼ N(y(xn;w), σ2), which gives a
corresponding likelihood:

p(t|w,σ2) = (2πσ2)–N/2 exp
{
− 1

2σ2
‖t−Φw‖2

}
, (28)

where as before we denote t = (t1 . . . tN )T, w = (w1 . . . wM )T, and Φ is the N ×M ‘design’ matrix
with Φnm = φm(xn).

Following the Bayesian framework, we desire the posterior distribution over all unknowns:

p(w,α,σ2|t) =
p(t|w, α,σ2)p(w, α,σ2)

p(t)
, (29)

which we can’t compute analytically. So as previously, we decompose this as:

p(w, α,σ2|t) ≡ p(w|t, α,σ2) p(α,σ2|t) (30)

where p(w|t, α,σ2) is the ‘weight posterior’ distribution, and is tractable. This leaves p(α,σ2|t)
which must be approximated.

  w2

  w1

  
If we let a→ 0,b→ 0, then p logα i( )→ uniform and p wi( )→ wi

−1
.
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RVMs for Regression 

  In practice, it is difficult to integrate α out exactly. 
  Instead, we use Type II Maximum Likelihood, finding ML values for each αi. 
  When we maximize the evidence with respect to these hyperparameters, 

many will ∞. 
  As a result, the corresponding weights will  0, yielding a sparse solution. 

   

Likelihood:

p t | X,w,β( ) = p tn | xn,w,β( )
n=1

N

∏
where the nth  row of X is xn

t .

    

Prior:

p(w |α) = N wi | 0,α i
−1( )

i=1

M

∏
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RVMs for Regression 

  Since both the likelihood and prior are normal, the posterior over w will 
also be normal: 

    

Posterior:
p w | t,X,α,β( ) =N w |m,Σ( )
where 
m = βΣΦt t

Σ = A + βΦtΦ( )−1

and 
Φni = φi xn( )
A = diag α i( )
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RVMs for Regression 

  The values for α and βare determined using the evidence approximation, 
where we maximize 

   p t | X,α,β( ) = p t | X,w,β( )p w |α( )dw∫

  

In general, this results in many of the precision parameters α i →∞,
so that wi → 0.

 Unfortunately, this is a non-convex problem.
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Example 
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