SPARSE KERNEL MACHINES

J. Elder

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Inference can be slow for kernel methods, as the kernel $k(\mathbf{x}, \mathbf{x}_n)$ must be evaluated for the new data point **x** against **all** training data points \mathbf{x}_n .

In a sparse kernel machine, the kernel $k(\mathbf{x}, \mathbf{x}_n)$ need only be evaluated for a subset of the training data.

We will focus in particular on the **Support Vector Machine** (SVM), applied to **classification** problems.

SVMs are **discriminative decision machines**: they do not provide posterior probabilities.

Support Vector Machines

Sparse Kernel Machines

SVMs are based on the linear model $y(\mathbf{x}) = \mathbf{w}^t \phi(\mathbf{x}) + b$

Assume training data $\mathbf{x}_1, \dots, \mathbf{x}_N$ with coresponding target values $t_1, \dots, t_N, t_n \in \{-1, 1\}$.

x classified according to sign of $y(\mathbf{x})$.

Assume for the moment that the training data are linearly separable in feature space.

Then $\exists \mathbf{w}, b: t_n y(\mathbf{x}_n) > 0 \ \forall n \in [1, ..., N]$

Maximum Margin Classifiers

Sparse Kernel Machines

- When the training data are linearly separable, there are generally an infinite number of solutions for (w, b) that separate the classes exactly.
- The margin of such a classifier is defined as the orthogonal distance in feature space between the decision boundary and the closest training vector.
- SVMs are an example of a maximum margin classifer, which finds the linear classifier that maximizes the margin.

Probabilistic Motivation

Sparse Kernel Machines

□ The maximum margin classifier has a probabilistic motivation.

If we model the class-conditional densities with a KDE using Gaussian kernels with variance σ^2 , then in the limit as $\sigma \rightarrow 0$, the optimal linear decision boundary \rightarrow maximum margin linear classifier.

Two Class Discriminant Function

Sparse Kernel Machines

Maximum Margin Classifiers

Sparse Kernel Machines

Distance of point \mathbf{x}_{n} from decision surface is given by:

$$\frac{t_n y(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n (\mathbf{w}^t \phi(\mathbf{x}_n) + b)}{\|\mathbf{w}\|}$$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Maximum Margin Classifiers

Sparse Kernel Machines

Distance of point \mathbf{x}_n from decision surface is given by:

$$\frac{t_n \mathbf{y}(\mathbf{x}_n)}{\|\mathbf{w}\|} = \frac{t_n \left(\mathbf{w}^t \phi(\mathbf{x}_n) + b\right)}{\|\mathbf{w}\|}$$

Note that rescaling **w** and b by the same factor leaves the distance to the decision surface unchanged.

Thus, wlog, we consider only solutions that satisfy:

$$t_n\left(\mathbf{w}^t\phi\left(\mathbf{x}_n\right)+b\right)=1.$$

for the point \mathbf{x}_n that is closest to the decision surface.

Quadratic Programming Problem

Sparse Kernel Machines

Then all points \mathbf{x}_n satisfy $t_n (\mathbf{w}^t \phi(\mathbf{x}_n) + b) \ge 1$

Points for which equality holds are said to be **active**. All other points are **inactive**.

Now
$$\underset{\mathbf{w},b}{\operatorname{arg\,max}} \left\{ \frac{1}{\|\mathbf{w}\|} \min_{n} \left[t_{n} \left(\mathbf{w}^{t} \phi(\mathbf{x}_{n}) + b \right) \right] \right\}$$

 $\leftrightarrow \frac{1}{2} \operatorname{arg\,min}_{\mathbf{w}} \|\mathbf{w}\|^{2}$
subject to $t_{n} \left(\mathbf{w}^{t} \phi(\mathbf{x}_{n}) + b \right) \ge 1 \quad \forall \mathbf{x}_{n}$

This is a **quadratic programming** problem.

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Quadratic Programming Problem

Sparse Kernel Machines

$$\frac{1}{2} \underset{\mathbf{w}}{\operatorname{arg\,min}} \|\mathbf{w}\|^2, \text{ subject to } t_n \left(\mathbf{w}^t \phi \left(\mathbf{x}_n\right) + b\right) \ge 1 \ \forall \mathbf{x}_n$$

Solve using Lagrange multipliers a_n :

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \arg\min_{\mathbf{w}} \|\mathbf{w}\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^t \phi(\mathbf{x}_n) + b \right) - 1 \right\}$$

END OF LECTURE NOV 8, 2010

J. Elder

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Sparse Kernel Machines

Solve using Lagrange multipliers a_n :

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \arg\min_{\mathbf{w}} \left\| \mathbf{w} \right\|^2 - \sum_{n=1}^{N} a_n \left\{ t_n \left(\mathbf{w}^t \phi \left(\mathbf{x}_n \right) + b \right) - 1 \right\}$$

Setting derivatives with respect to **w** and b, we get:

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$
$$\sum_{n=1}^{N} a_n t_n = 0$$

Sparse Kernel Machines

Substituting for w and b leads to the dual representation of the maximum margin problem, in which we maximize:

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_m)$$

with respect to **a**, subject to:

$$a_n \ge 0 \ \forall n$$
$$\sum_{n=1}^N a_n t_n = 0$$
and where $k(\mathbf{x}, \mathbf{x'}) = \phi(\mathbf{x})^t \phi(\mathbf{x'})$

Sparse Kernel Machines

Using
$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$
, a new point x is classified by computing
 $y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$

The Karush-Kuhn-Tucker (KKT) conditions for this constrained optimization problem are: a ≥ 0

$$t_n y(\mathbf{x}_n) - 1 \ge 0$$

$$a_n \{t_n y(\mathbf{x}_n) - 1\} = 0$$
Thus for every data point, either $a_n = 0$ or $t_n y(\mathbf{x}_n) = 1$.

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Solving for the Bias

Sparse Kernel Machines

Once the optimal **a** is determined, the bias *b* can be computed from

$$b = \frac{1}{N_{S}} \sum_{n \in S} \left(t_{n} - \sum_{m \in S} a_{m} t_{m} k(\mathbf{x}_{n}, \mathbf{x}_{m}) \right)$$

where S is the index set of support vectors and N_s is the number of support vectors.

Example (Gaussian Kernel)

Sparse Kernel Machines

16

J. Elder

Overlapping Class Distributions

Sparse Kernel Machines

The SVM for non-overlapping class distributions can be expressed as the minimization of $\sum_{n=1}^{N} E_{\infty} (y(\mathbf{x}_{n})t_{n} - 1) + \lambda \|\mathbf{w}\|^{2}$ where $E_{\infty}(z)$ is 0 if $z \ge 0$, and ∞ otherwise.

This forces all points to lie on or outside the margins, on the correct side for their class.

Slack Variables

Sparse Kernel Machines

To this end, we introduce *N* slack variables $\xi_n \ge 0$, n = 1, ..., N.

 $\xi_n = 0$ for points on or on the correct side of the margin boundary for their class $\xi_n = |t_n - y(\mathbf{x}_n)|$ for all other points.

Thus $\xi_n < 1$ for points that are correctly classified $\xi_n > 1$ for points that are incorrectly classified

We now minimize
$$C\sum_{n=1}^{N} \xi_n + \frac{1}{2} \|\mathbf{w}\|^2$$
, where $C > 0$.
subject to $t_n y(\mathbf{x}_n) \ge 1 - \xi_n$, and $\xi_n \ge 0$, $n = 1, ..., N$
 $\xi > 1$
 $\xi > 1$
 $\xi > 1$
 $\xi < 1$
 $\xi = 0$
 $\xi =$

Sparse Kernel Machines

This leads to a dual representation, where we maximize

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Support Vectors

Sparse Kernel Machines

Again, a new point \mathbf{x} is classified by computing

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

For points that are on the correct side of the margin, $a_n = 0$.

Thus support vectors consist of points between their margin and the decision boundary, as well as misclassified points. u = -1

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Bias

Sparse Kernel Machines

Again, a new point **x** is classified by computing

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}, \mathbf{x}_n) + b$$

Once the optimal **a** is determined, the bias b can be computed from

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m k(\mathbf{x}_n, \mathbf{x}_m) \right)$$

where

S is the index set of support vectors $N_{\rm s}$ is the number of support vectors \mathcal{M} is the index set of points on the margins N_{M} is the number of points on the margins

Solving the Quadratic Programming Problem

Sparse Kernel Machines

$$\tilde{L}(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m k(\mathbf{x}_n, \mathbf{x}_n)$$

subject to $0 \le a_n \le C$ and $\sum_{n=1}^{N} a_n t_n = 0$

- □ Problem is convex.
- □ Solutions are generally $O(N^3)$.
- Traditional quadratic programming techniques often infeasible due to computation and memory requirements.
- Instead, heuristic methods such as sequential minimal optimization can be used, that in practice are found to scale as O(N) O(N²).

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Example

Sparse Kernel Machines

J. Elder

Relation to Logistic Regression

Sparse Kernel Machines

The objective function for the soft-margin SVM can be written as:

$$\sum_{n=1}^{N} E_{SV} (y_n t_n) + \lambda \|\mathbf{w}\|^2$$

where $E_{SV} (z) = [1 - z]_+$ is the hinge error function,
and $[z]_+ = z$ if $z \ge 0$
= 0 otherwise.

For $t \in \{-1, 1\}$, the objective function for a regularized version

of logistic regression can be written as:

$$\sum_{n=1}^{N} E_{LR} \left(y_n t_n \right) + \lambda \left\| \mathbf{w} \right\|^2$$

where $E_{LR} \left(z \right) = \log \left(1 + \exp(-z) \right)$.

Sparse Kernel Machines

We encounter the same problems we experienced with least-squares.

One-Versus-The-Rest

Sparse Kernel Machine

- □ Idea #1: Just use K-1 discriminant functions, each of which separates one class C_k from the rest.
- Problem: Ambiguous regions

One-Versus-The-Rest

Sparse Kernel Machines

- **Possible Solution:** select class according to: $\operatorname{argmax} y_k(\mathbf{x})$
- Problems:
 - Classifiers were all trained separately.
 - Methods for joint training have been proposed slows training.
 - Training is imbalanced (e.g., for K=10 classes, 10% in-class, 90% out-of-class)

One-Versus-One

Sparse Kernel Machines

- □ Idea #2: Use K(K-1)/2 discriminant functions, each of which separates two classes $C_{j'}$, C_k from each other.
- Each point classified by majority vote.
- Problems:
 - Ambiguous regions
 - Expensive

Assignment 1 Results

UN

RSITÉ

UNIVERSITY

Methods Submitted

Sparse Kernel Machines

- Hierarchy of Gaussian models
- Treat x and y coordinates as independent
- Probabilistic PCA
- Gaussian mixtures
- Mean shift
- Use sample mean rather than theoretical mean
- Approximate mean as an ellipse
- Local Gaussian model
- Bi-arc interpolation

Some Things We've Learned

Sparse Kernel Machines

- Use the book!
- □ The curse of dimensionality
- Probabilistic PCA
- □ The importance of coding correctly!

Assignment 2

- Classify shapes as 'animal' or 'vegetable'
- Winner has the highest proportion correct
- May be tough to beat nearest-neighbour for this dataset

Classifiers Provided

0.8 **Proportion Correct** 0.6 0.4 0.2 0 NN Least Sq Classifier

33

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Sparse Kernel Machines

In standard linear regression, we minimize

$$\frac{1}{2}\sum_{n=1}^{N} (y_n - t_n)^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

This penalizes all deviations from the model.

To obtain sparse solutions, we replace the quadratic error function by an ε -insensitive error function, e.g.,

$$E_{\varepsilon}(y(\mathbf{x})-t) = \begin{cases} 0, \text{ if } |y(\mathbf{x})-t| < \varepsilon \\ |y(\mathbf{x})-t| - \varepsilon, \text{ otherwise} \end{cases}$$

See text for details of solution.

Example

Y

J. Elder

Relevance Vector Machines

Sparse Kernel Machines

Some drawbacks of SVMs:

- Do not provide posterior probabilities.
- Not easily generalized to K > 2 classes.
- **D** Parameters (C, \mathcal{E}) must be learned by cross-validation.
- The Relevance Vector Machine is a sparse Bayesian kernel technique that avoids these drawbacks.
- RVMs also typically lead to sparser models.

Sparse Kernel Machines

$$p(t \mid \mathbf{x}, \mathbf{w}, \beta) = \mathcal{N}(t \mid y(\mathbf{x}), \beta^{-1})$$

where $y(\mathbf{x}) = \mathbf{w}^t \phi(\mathbf{x})$

In an RVM, the basis functions $\phi(\mathbf{x})$ are kernels $k(\mathbf{x}, \mathbf{x}_n)$:

$$y(x) = \sum_{n=1}^{N} w_n k(\mathbf{x}, \mathbf{x}_n) + b$$

However, unlike in SVMs, the kernels need not be positive definite, and the \mathbf{x}_n need not be the training data points.

Sparse Kernel Machines

Likelihood:

$$p(\mathbf{t} | \mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} p(t_n | \mathbf{x}_n, \mathbf{w}, \beta)$$

where the n^{th} row of **X** is \mathbf{x}_{n}^{t} .

Prior:

$$\boldsymbol{\rho}(\mathbf{w} \mid \boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i \mid \mathbf{0}, \alpha_i^{-1})$$

□ Note that each weight parameter has its own precision hyperparameter.

Sparse Kernel Machines

- □ The conjugate prior for the precision of a Gaussian is a gamma distribution.
- Integrating out the precision parameter thus leads to a Student's t distribution over w_i.
- □ Thus the distribution over **w** is a product of Student's t distributions.
- □ As a result, maximizing the evidence will yield a sparse **w**.
- □ Note that to achieve sparsity it is critical that each parameter w_i has a separate precision α_i .

Sparse Kernel Machines

$$p(w_{i} | \alpha_{i}) = N(w_{i} | 0, \alpha_{i}^{-1})$$

$$w_{2}$$

$$p(\alpha_{i}) = Gam(\alpha_{i} | a, b)$$

$$p(w_{i}) = St(w_{i} | 0, a / b, 2a)$$

$$W_{1}$$
Gaussian prior
Marginal prior: single \alpha
Independent \alpha
Independent \alpha

If we let $a \to 0, b \to 0$, then $p(\log \alpha_i) \to \text{uniform and } p(w_i) \to |w_i|^{-1}$.

J. Elder

Sparse Kernel Machines

Likelihood:

$$p(\mathbf{t} | \mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} p(t_n | \mathbf{x}_n, \mathbf{w}, \beta)$$

where the n^{th} row of **X** is \mathbf{x}_{n}^{t} .

Prior:

$$\boldsymbol{p}(\mathbf{w} \mid \boldsymbol{\alpha}) = \prod_{i=1}^{M} \mathcal{N}(w_i \mid \mathbf{0}, \alpha_i^{-1})$$

- \Box In practice, it is difficult to integrate α out exactly.
- Instead, we use Type II Maximum Likelihood, finding ML values for each α_i .
- □ When we maximize the evidence with respect to these hyperparameters, many will $\rightarrow \infty$.
- \Box As a result, the corresponding weights will \rightarrow 0, yielding a sparse solution.

Sparse Kernel Machines

Since both the likelihood and prior are normal, the posterior over w will also be normal:

Posterior:

$$p(\mathbf{w} | \mathbf{t}, \mathbf{X}, \alpha, \beta) = \mathcal{N}(\mathbf{w} | \mathbf{m}, \Sigma)$$

where

42

$$\mathbf{m} = \beta \Sigma \Phi^t \mathbf{t}$$
$$\Sigma = \left(\mathbf{A} + \beta \Phi^t \Phi\right)^{-1}$$

and

$$\Phi_{ni} = \phi_i \left(\mathbf{x}_n \right)$$
$$\mathbf{A} = \operatorname{diag} \left(\alpha_i \right)$$

The values for α and β are determined using the evidence approximation, where we maximize

 $p(\mathbf{t} | \mathbf{X}, \alpha, \beta) = \int p(\mathbf{t} | \mathbf{X}, \mathbf{w}, \beta) p(\mathbf{w} | \alpha) d\mathbf{w}$

In general, this results in many of the precision parameters $\alpha_i \rightarrow \infty$, so that $w_i \rightarrow 0$.

Unfortunately, this is a non-convex problem.

Example

Sparse Kernel Machines

J. Elder